A systematic review of the impact of artificial intelligence on educational outcomes in health professions education | BMC Medical Education

A systematic review of the impact of artificial intelligence on educational outcomes in health professions education | BMC Medical Education

  • Karabacak M, Ozkara BB, Margetis K, Wintermark M, Bisdas S. The Advent of Generative Language models in Medical Education. JMIR Med Educ. 2023;9:e48163.

    Article 

    Google Scholar 

  • Preiksaitis C, Rose C. Opportunities, challenges, and Future Directions of Generative Artificial Intelligence in Medical Education: scoping review. JMIR Med Educ. 2023;9:e48785.

    Article 

    Google Scholar 

  • Safranek CW, Sidamon-Eristoff AE, Gilson A, Chartash D. The role of large Language models in Medical Education: applications and implications. JMIR Med Educ 14 août. 2023;9:e50945.

    Article 

    Google Scholar 

  • Abbott KL, George BC, Sandhu G, Harbaugh CM, Gauger PG, Erkin O, et al. Natural Language Processing to Estimate Clinical Competency Committee Ratings. 2021;78(6):2046–51.

    Google Scholar 

  • Johnsson V, Søndergaard MB, Kulasegaram K, Sundberg K, Tiblad E, Herling L, et al. Validity evidence supporting clinical skills assessment by artificial intelligence compared with trained clinician raters. Med Educ. 2024;58(1):105–17.

    Article 

    Google Scholar 

  • Winkler-Schwartz A, Yilmaz R, Mirchi N, Bissonnette V, Ledwos N, Siyar S, et al. Machine Learning Identification of Surgical and Operative factors Associated with Surgical expertise in virtual reality Simulation. JAMA Netw Open. 2019;2(8):e198363–198363.

    Article 

    Google Scholar 

  • Masters K. Ethical use of Artificial Intelligence in Health Professions Education: AMEE Guide No. 158. Med Teach. 2023;45(6):574–84.

  • Gilson A, Safranek CW, Huang T, Socrates V, Chi L, Taylor RA, et al. How does ChatGPT perform on the United States Medical Licensing examination? The implications of Large Language Models for Medical Education and Knowledge Assessment. JMIR Med Educ 8 févr. 2023;9:e45312.

    Article 

    Google Scholar 

  • Roos J, Kasapovic A, Jansen T, Kaczmarczyk R. Artificial intelligence in medical education: comparative analysis of ChatGPT, Bing, and medical students in Germany. JMIR Med Educ 4 sept. 2023;9:e46482.

    Article 

    Google Scholar 

  • Knopp MI, Warm EJ, Weber D, Kelleher M, Kinnear B, Schumacher DJ, et al. AI-Enabled Medical Education: threads of Change, Promising futures, and Risky realities Across four potential future worlds. JMIR Med Educ,. 2023;9:e50373.

    Article 

    Google Scholar 

  • Ahsan MM, Luna SA, Siddique Z. Machine-learning-based Disease diagnosis: a Comprehensive Review. Healthcare. 2022;10(3):541.

    Article 

    Google Scholar 

  • Alowais SA, Alghamdi SS, Alsuhebany N, Alqahtani T, Alshaya AI, Almohareb SN, et al. Revolutionizing healthcare: the role of artificial intelligence in clinical practice. BMC Med Educ. 2023;23(1):689.

    Article 

    Google Scholar 

  • Lucas HC, Upperman JS, Robinson JR. A systematic review of large language models and their implications in medical education. Med Educ. 19 avr 2024 [cité 4 juill 2024];n/a(n/a). Disponible sur: https://doi.org/10.1111/medu.15402.

  • Schmidt HG, Norman GR, Boshuizen HP. A cognitive perspective on medical expertise: theory and implication [published erratum appears in Acad Med. 1992;67(4):287]. Acad Med. 1990;65(10). https://journals.lww.com/academicmedicine/fulltext/1990/10000/a_cognitive_perspective_on_medical_expertise_.1.aspx.

  • Kirkpatrick DL. Techniques for evaluation Training Programs. J Am Soc Train Dir. 1959;13:21–6.

    Google Scholar 

  • Maicher KR, Stiff A, Scholl M, White M, Fosler-Lussier E, Schuler W, et al. Artificial intelligence in virtual standardized patients: combining natural language understanding and rule based dialogue management to improve conversational fidelity. Med Teach 4 mars. 2023;45(3):279–85.

    Article 

    Google Scholar 

  • Ellaway RH, Tolsgaard M. Artificial scholarship: LLMs in health professions education research. Adv Health Sci Educ 1 août. 2023;28(3):659–64.

    Article 

    Google Scholar 

  • Abd-alrazaq A, AlSaad R, Alhuwail D, Ahmed A, Healy PM, Latifi S, et al. Large Language models in Medical Education: opportunities, challenges, and future directions. JMIR Med Educ 2023;9:e48291. https://doi.org/10.2196/48291.

  • Boscardin CK, Gin B, Golde PB, Hauer KE. ChatGPT and Generative Artificial Intelligence for Medical Education: potential impact and opportunity. Acad Med. 2024;99(1). Disponible sur: https://journals.lww.com/academicmedicine/fulltext/2024/01000/chatgpt_and_generative_artificial_intelligence_for.11.aspx.

  • Chary M, Parikh S, Manini AF, Boyer EW, Radeos MA. Review of Natural Language Processing in Medical Education. Western J Emerg Med. 2019;20(1):78–86.

    Article 

    Google Scholar 

  • Preiksaitis C, Ashenburg N, Bunney G, Chu A, Kabeer R, Riley F, et al. The role of large Language models in transforming Emergency Medicine: scoping review. JMIR Med Inf 10 mai. 2024;12:e53787.

    Article 

    Google Scholar 

  • Stamer T, Steinhäuser J, Flägel K. Artificial Intelligence Supporting the Training of Communication Skills in the education of Health Care professions: scoping review. J Med Internet Res. 2023;25:e43311.

    Article 

    Google Scholar 

  • Tolsgaard MG, Boscardin CK, Park YS, Cuddy MM, Sebok-Syer SS. The role of data science and machine learning in Health professions Education: practical applications, theoretical contributions, and epistemic beliefs. Adv Health Sci Educ Theory Pract déc. 2020;25(5):1057–86.

    Article 

    Google Scholar 

  • Gordon M, Daniel M, Ajiboye A, Uraiby H, Xu NY, Bartlett R, et al. A scoping review of artificial intelligence in medical education: BEME Guide 84. Med Teach 2 avr. 2024;46(4):446–70.

    Article 

    Google Scholar 

  • Lee J, Wu AS, Li D, Kulasegaram KM. Artificial Intelligence in Undergraduate Medical Education: a scoping review. Acad Med J Assoc Am Med Coll 1 nov. 2021;96(11S):S62–70.

    Article 

    Google Scholar 

  • Levin G, Horesh N, Brezinov Y, Meyer R. Performance of ChatGPT in medical examinations: a systematic review and a meta-analysis. BJOG Int J Obstet Gynaecol. 2024;131(3):378–80.

    Article 

    Google Scholar 

  • Haig A, Dozier M. BEME Guide 3: systematic searching for evidence in medical education – part 2: constructing searches. Med Teach. 2003;25:463–84.

    Article 

    Google Scholar 

  • Hammick M, Dornan T, Steinert Y. Conducting a best evidence systematic review. Part 1: from idea to data coding. BEME Guide 13 Med Teach. 2010;32:3–15.

    Article 

    Google Scholar 

  • Kolaski K, Logan LR, Ioannidis JPA. Guidance to best tools and practices for systematic reviews. Syst Rev 8 juin. 2023;12(1):96.

    Article 

    Google Scholar 

  • Feigerlova E. A Systematic Review on Impact of artificial Intelligence and ChatGPT in training and assessment in health professions education. 4 juin 2024; Disponible sur: Retrieved from https://osf.io/v5cgp/.

  • Collins G, Reitsma JB, Altman DG, Moons KGM. Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD): The TRIPOD Statement. Ann Intern Med. 2015;162(1):55–63.

  • Bates DW, Auerbach A, Schulam P, Wright A, Saria S. Reporting and Implementing Interventions Involving Machine Learning and Artificial Intelligence. Ann Intern Med. 2 juin. 2020;172(11_Supplement):S137–44.

  • Schulz KF, Altman DG, Moher D. CONSORT 2010 Statement: updated guidelines for reporting parallel group randomised trials. BMJ 24 mars. 2010;340:c332.

    Google Scholar 

  • Mongan J, Moy L, Kahn CE. Checklist for Artificial Intelligence in Medical Imaging (CLAIM): a guide for authors and reviewers. Radiol Artif Intell 1 mars. 2020;2(2):e200029.

    Article 

    Google Scholar 

  • Sterne JAC, Savović J, Page MJ, Elbers RG, Blencowe NS, Boutron I, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ 28 août. 2019;366:l4898.

    Google Scholar 

  • Sterne JAC, Hernán MA, MA, Reeves BC, Savović J, Berkman ND, Viswanathan M et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ. 2016;355:i4919.

  • von Elm E, Altman D, Egger M, Pocock P SJ, Gotzsche PC, Vandenbroucke JP, et al. The strengthening the reporting of Observational studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. Ann Intern Med. 2007;147:573–7. Erratum in: Ann Intern Med. 2008;148:168.

  • Schünemann HJ, Brennan S, Akl EA, Hultcrantz M, Alonso-Coello P, Xia J, et al. The development methods of official GRADE articles and requirements for claiming the use of GRADE – a statement by the GRADE guidance group. J Clin Epidemiol. 2023;159:79–84.

    Article 

    Google Scholar 

  • Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 29 mars. 2021;372:n71.

    Google Scholar 

  • Campbell M, McKenzie JE, Sowden A, Katikireddi SV, Brennan SE, Ellis S, et al. Synthesis without meta-analysis (SWiM) in systematic reviews: reporting guideline. BMJ. 2020;368:l6890.

    Article 

    Google Scholar 

  • Gordon M, Gibbs T. STORIES statement: publication standards for healthcare education evidence synthesis. BMC Med 3 sept. 2014;12(1):143.

    Article 

    Google Scholar 

  • Herrington J, Reeves TC, Oliver R. A practical guide to authentic E-learning. New York, NY: Routledge; 2009.

    Book 

    Google Scholar 

  • Herrington J. Authentic e-learning in higher education: Design principles for authentic learning environments and tasks. Faculty of Education – Papers. 2006.

  • Brown JS, Collins A, Duguid P. Situated cognition and the culture of learning. Educational Researcher. 1989;18(1):32–42.

    Article 

    Google Scholar 

  • An P, Wang Z. Application value of an artificial intelligence-based diagnosis and recognition system in gastroscopy training for graduate students in gastroenterology: a preliminary study. Wien Med Wochenschr 1946. 2023. https://libezproxy.dundee.ac.uk/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&AN=37676426&site=ehost-live&scope=site.

  • Chassagnon G, Billet N, Rutten C, Toussaint T, Cassius de Linval Q, Collin M, et al. Learning from the machine: AI assistance is not an effective learning tool for resident education in chest x-ray interpretation. Eur Radiol Nov. 2023;33(11):8241–50.

    Article 

    Google Scholar 

  • Furlan R, Gatti M, Menè R, Shiffer D, Marchiori C, Giaj Levra A, et al. A Natural Language Processing–based virtual patient Simulator and Intelligent Tutoring System for the clinical diagnostic process: Simulator Development and Case Study. JMIR Med Inf 9 avr. 2021;9(4):e24073.

    Article 

    Google Scholar 

  • Kanazawa A, Fujibayashi K, Watanabe Y, Kushiro S, Yanagisawa N, Fukataki Y, et al. Evaluation of a medical interview-assistance system using Artificial Intelligence for Resident Physicians interviewing simulated patients: a crossover, Randomized, Controlled Trial. Int J Environ Res Public Health. 2023;19(12):6176.

    Article 

    Google Scholar 

  • Kim AR, Park AY, Song S, Hong JH, Kim K. A microlearning-based self-directed Learning Chatbot on Medication Administration for New nurses: a feasibility study. CIN Comput Inf Nurs. 2024;42(5). https://journals.lww.com/cinjournal/fulltext/2024/05000/a_microlearning_based_self_directed_learning.6.aspx.

  • Liaw SY, Tan JZ, Bin Rusli KD, Ratan R, Zhou W, Lim S, et al. Artificial Intelligence Versus Human-controlled doctor in virtual reality Simulation for Sepsis Team Training: Randomized Controlled Study. J Med Internet Res. 2023b;25:e47748.

    Article 

    Google Scholar 

  • Liaw SY, Tan JZ, Lim S, Wentao Zhou, Yap J, Ratan R, et al. Artificial intelligence in virtual reality simulation for interprofessional communication training: mixed method study. Nurse Educ Today. 2023a;122:105718.

    Article 

    Google Scholar 

  • Meetschen M, Salhöfer L, Beck N, Kroll L, Ziegenfuß CD, Schaarschmidt BM et al. AI-Assisted X-ray Fracture Detection in Residency Training: Evaluation in Pediatric and Adult Trauma Patients. Diagnostics (Basel). 11 mars. 2024;14(6):596(6):596.

  • Shorey S, Ang ENK, Ng ED, Yap J, Lau LST, Chui CK et al. Evaluation of a theory-based virtual counseling application in nursing education. CIN Comput Inf Nurs. 2023;41(6). Disponible sur: https://journals.lww.com/cinjournal/fulltext/2023/06000/evaluation_of_a_theory_based_virtual_counseling.4.aspx.

  • Truong H, Qi D, Ryason A, Sullivan AM, Cudmore J, Alfred S, et al. Does your team know how to respond safely to an operating room fire? Outcomes of a virtual reality, AI-enhanced simulation training. Surg Endosc Mai. 2022;36(5):3059–67.

    Article 

    Google Scholar 

  • Yang Y, Shulruf B. Expert-led and artificial intelligence (AI) system- assisted tutoring course increase confidence of Chinese medical interns on suturing and ligature skills: prospective pilot study. J Educ Eval Health Prof. 2019;(16):7.

  • Zech JR, Ezuma CO, Patel S, Edwards CR, Posner R, Hannon E et al. Artificial intelligence improves resident detection of pediatric and young adult upper extremity fractures. Skeletal Radiol. 2024. Disponible sur: https://doi.org/10.1007/s00256-024-04698-0.

  • Schünemann HJ, Mustafa RA, Brozek J, Steingart KR, Leeflang M, Murad MH, et al. GRADE guidelines: 21 part 2. Test accuracy: inconsistency, imprecision, publication bias, and other domains for rating the certainty of evidence and presenting it in evidence profiles and summary of findings tables. J Clin Epidemiol. 2020;122:142–52.

    Article 

    Google Scholar 

  • Ross JG, Latz E, Meakim CH, Mariani B. TeamSTEPPS curricular-wide integration: baccalaureate nursing students’ knowledge, attitudes, and perceptions. Nurse Educ. 2021;46(6). Disponible sur: https://journals.lww.com/nurseeducatoronline/fulltext/2021/11000/teamstepps_curricular_wide_integration_.11.aspx.

  • Bandura A. Self-efficacy: the Exercise of Control. New York, NY: Macmillan; 1997.

    Google Scholar 

  • Kiili K. Content creation challenges and flow experience in educational games: the IT-emperor case. Internet High Educ. 2005;8(3):183–98.

    Article 

    Google Scholar 

  • Weng X, Ye H, Dai Y, Ng Olam. Integrating Artificial Intelligence and Computational thinking in Educational contexts: a systematic review of Instructional Design and Student Learning outcomes. J Educ Comput Res 1 oct. 2024;62(6):1640–70.

    Article 

    Google Scholar 

  • Bandura A. Social Learning Theory. Englewood Cliffs, NJ: Prentice-Hall; 1977.

    Google Scholar 

  • Torre DM, Daley BJ, Sebastian JL, Elnicki DM. Overview of current learning theories for medical educators. Am J Med. 2006;1(10):903–7.

  • Vygotsky L. Mind in Society: the development of higher psychological processes. Harvard University Press; 1978.

    Google Scholar 

  • Kolb D. Experiential Learning: Experience As The Source Of Learning And Development. 1984.

  • Caffarella RS, Barnett BG. Characteristics of adult learners and foundations of experiential learning. In: Jackson L, Caffarella RS, editors. Experiential learning:a new approach. San Francisco, CA: Jossey-Bass Inc; 1994. pp. 29–42.

    Google Scholar 

  • Knowles MS. Andragogy in action: applying principles of adult learning. San Francisco: Jossey-Bass; 1984.

    Google Scholar 

  • Mergen M, Graf N, Meyerheim M. Reviewing the current state of virtual reality integration in medical education – a scoping review. BMC Med Educ. 2024;24(1):788.

    Article 

    Google Scholar 

  • Melton R, Objectives. Competencies and Learning Outcomes: Developing Instructional Materials in Open and Distance Learning. 1997. p. 156.

  • Linn RL, Miller MD. Measurement and Assessment in Teaching. 9th ed. Upper Saddle River, NJ: Pearson; 2005.

    Google Scholar 

  • Vickers R, Field J, Melakoski C. Media culture 2020: collaborative teaching and blended learning using social media and cloud-based technologies. Contemp Educational Technol. 2015;6:62–73.

    Article 

    Google Scholar 

  • Obilor EI. Feedback and students’ learning. Int J Innov Res Educ 2 avr. 2019;7:40–7.

    Google Scholar 

  • Jacobs SM, Lundy NN, Issenberg SB, Chandran L. Reimagining Core Entrustable Professional activities for Undergraduate Medical Education in the era of Artificial Intelligence. JMIR Med Educ. 2023;9:e50903.

    Article 

    Google Scholar 

  • Obermeyer Z, Powers B, Vogeli C, Mullainathan S. Dissecting racial bias in an algorithm used to manage the health of populations. Sci 25 oct. 2019;366(6464):447–53.

    Google Scholar 

  • Holzinger A, Langs G, Denk H, Zatloukal K, Müller H. Causability and explainability of artificial intelligence in medicine. WIREs Data Min Knowl Discov 1 Juill. 2019;9(4):e1312.

    Article 

    Google Scholar 

  • Markovski Y. Data usage for consumer services FAQ. OpenAI. juill 2024; Disponible sur: https://help.openai.com/en/articles/7039943-data-usage-for-consumer-services-faq.

  • Reilly C, Reeves TC. Refining active learning design principles through design-based research. Act Learn High Educ 1 mars. 2024;25(1):81–100.

    Article 

    Google Scholar 

  • Harden RM. Learning outcomes and instructional objectives: is there a difference? Med Teach. 2002;24(2):151–5.

    Article 

    Google Scholar 

  • Hartel R, Foegeding EA. Learning: objectives, competencies, or outcomes ? J Food Sci Educ. 2004;3:69–70.

    Article 

    Google Scholar 

  • Bandura A. Social foundations of thought and action: A social cognitive theory. 1986. p. 640.

  • Lin CC, Huang A, Lu O. Artificial intelligence in intelligent tutoring systems toward sustainable education: a systematic review. Smart Learn Environ. 2023;10(41).

  • Chan KS, Zary N. Applications and Challenges of Implementing Artificial Intelligence in Medical Education: integrative review. JMIR Med Educ 15 juin. 2019;5(1):e13930.

    Article 

    Google Scholar 

  • Masters K. Artificial intelligence in medical education. Med Teach. 2019;41(9):976–80.

    Article 

    Google Scholar 

  • Masters K, Herrmann-Werner A, Festl-Wietek T, Taylor D. Preparing for Artificial General Intelligence (AGI) in Health professions Education: AMEE Guide 172. Med Teach. 2024;1–14.

  • Daneshvar N, Pandita D, Erickson S, Sulmasy LS, DeCamp M. Artificial Intelligence in the provision of Health Care: an American College of Physicians policy position paper. Ann Intern Med. 4 juin 2024 [cité 22 juin 2024]; Disponible sur: https://doi.org/10.7326/M24-0146.

  • Charow R, Jeyakumar T, Younus S, Dolatabadi E, Salhia M, Al-Mouaswas D, et al. Artificial intelligence education programs for health care professionals: scoping review. JMIR Med Educ. 2021;7(4):e31043.

    Article 

    Google Scholar 

  • Ng FYC, Thirunavukarasu AJ, Cheng H, Tan TF, Gutierrez L, Lan Y et al. Artificial intelligence education: an evidence-based medicine approach for consumers, translators, and developers. Cell Rep Med [Internet] 17 oct 2023 [cité 27 déc 2024];4(10). Disponible sur: https://doi.org/10.1016/j.xcrm.2023.101230.

  • Száva-Kováts E. Unfounded attribution of the half-life index-number of literature obsolescence to Burton and Kebler: A Literature Science Study. J Am Soc Inf Sci Technol. 2002;53:1098–105.

    Article 

    Google Scholar 

  • Wartman S, Combs C. Medical Education must move from the information age to the age of Artificial Intelligence. Acad Med 1 nov. 2017;93:1.

    Google Scholar 

  • Tlili A, Shehata B, Adarkwah MA, Bozkurt A, Hickey DT, Huang R et al. What if the devil is my guardian angel: ChatGPT as a case study of using chatbots in education. Smart Learn Environ. 22 févr. 2023;10(1):15.

  • McKenney S, Reeves TC. Educational design research: portraying, conducting, and enhancing productive scholarship. Med Educ 1 janv. 2021;55(1):82–92.

    Article 

    Google Scholar 

  • Richardson WS, Wilson MC, Nishikawa J, Hayward RS. The well- built clinical question: a key to evidence-based decisions. ACP J Club. 1995;123(3):A12e3.

    Article 

    Google Scholar 

  • Frandsen TF, Bruun Nielsen MF, Lindhardt CL, Eriksen MB. Using the full PICO model as a search tool for systematic reviews resulted in lower recall for some PICO elements. J Clin Epidemiol 1 nov. 2020;127:69–75.

    Article 

    Google Scholar 

  • Flanagin A, Pirracchio R, Khera R, Berkwits M, Hswen Y, Bibbins-Domingo K. Reporting Use of AI in Research and Scholarly Publication—JAMA Network Guidance. JAMA 2 avr. 2024;331(13):1096–8.

    Article 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *